Graph labeling in competition graph

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Edge pair sum labeling of spider graph

An injective map f : E(G) → {±1, ±2, · · · , ±q} is said to be an edge pair sum labeling of a graph G(p, q) if the induced vertex function f*: V (G) → Z − {0} defined by f*(v) = (Sigma e∈Ev) f (e) is one-one, where Ev denotes the set of edges in G that are incident with a vetex v and f*(V (G)) is either of the form {±k1, ±k2, · · · , ±kp/2} or {±k1, ±k2, · · · , ±k(p−1)/2} U {k(p+1)/2} accordin...

متن کامل

edge pair sum labeling of spider graph

an injective map f : e(g) → {±1, ±2, · · · , ±q} is said to be an edge pair sum labeling of a graph g(p, q) if the induced vertex function f*: v (g) → z − {0} defined by f*(v) = (sigma e∈ev) f (e) is one-one, where ev denotes the set of edges in g that are incident with a vetex v and f*(v (g)) is either of the form {±k1, ±k2, · · · , ±kp/2} or {±k1, ±k2, · · · , ±k(p−1)/2} u {k(p+1)/2} accordin...

متن کامل

Some Graph Labelings in Competition Graph of Cayley Digraphs

In this paper we present an algorithm and prove the existence of graph labelings such as Z 3 -magic, Cordial, total cordial, E-cordial, total E-cordial, Product cordial, total product cordial, Product E-cordial, total product E-cordial labelings for the Competition graph of the Cayley digraphs associated with the diheadral group D n . AMS SUBJECT CLASSIFICATION: 05C78.

متن کامل

dynamic coloring of graph

در این پایان نامه رنگ آمیزی دینامیکی یک گراف را بیان و مطالعه می کنیم. یک –kرنگ آمیزی سره ی رأسی گراف g را رنگ آمیزی دینامیکی می نامند اگر در همسایه های هر رأس v?v(g) با درجه ی حداقل 2، حداقل 2 رنگ متفاوت ظاهر شوند. کوچکترین عدد صحیح k، به طوری که g دارای –kرنگ آمیزی دینامیکی باشد را عدد رنگی دینامیکی g می نامند و آنرا با نماد ?_2 (g) نمایش می دهند. مونت گمری حدس زده است که تمام گراف های منتظم ...

15 صفحه اول

Combining Graph Labeling and Compaction

Combinations of graph drawing and map labeling problems yield challenging mathematical problems and have direct applications, e.g., in automation engineering. We call graph drawing problems in which subsets of vertices and edges need to be labeled graph labeling problems. Unlike in map labeling where the position of the objects is specified in the input, the coordinates of vertices and edges in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indian Journal of Science and Technology

سال: 2011

ISSN: 0974-6846,0974-5645

DOI: 10.17485/ijst/2011/v4i8.17